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Abstract

Recently, B.Y. Chen (Chen, 2011, 2012 (1)) studied some geometric properties of h-homogeneous production functions
with applications in microeconomics. The class of production functions includes many important production functions
in microeconomics; in particular, the well-known generalized Cobb-Douglas production function, widely used in
economics to represent the relationship of an output to inputs, and the ACMS production function, also known as the
Armington aggregator are production functions.

In (Mihai and Sandu, 2012), the authors continued the study of geometry of h-homogeneous production functions by
considering the minimality property of the production hypersurface and also the minimality of a production surface
corresponding to a quasi-sum production function of 2-variables.

In (Chen, 2012 (2)), B. Y. Chen classified h-homogeneous production functions with constant elasticity of substitution.
In this paper we make a survey of recent results on production functions obtained by B.Y. Chen, especially from (Chen,
2011), and also recall the results obtained by the first author in (Mihai and Sandu, 2012).

In this note, we consider examples of known production functions and verify by concrete calculations some of the
previous results. We study production surfaces by considering their constant Gauss curvature. Also, we calculate the
mean curvature for some particular production function of two-factors.

Keywords: h-homogeneous production function, perfect substitute, production hypersurface, quasi-sum production
function.

INTRODUCTION class of production functions includes many
important production functions in
The production function is one of the key microeconomics, such as the Cobb-Douglas
concepts in the economic field. A production production function and the generalized
function is a non-constant positive function, Cobb-Douglas  production function, the
specifying the output of a firm, an industry or ACMS production function and the
even entire economy for all combinations of generalized ACMS production function. For
inputs. details about the production functions and
their history, please see (Cobb and Douglas,
There is a very important class of production 1928), (Douglas, 1976), (Filipe and Adams,
functions that are often analyzed in both 2005), (Mishra, 2010).
microeconomics and macroeconomics;
namely, h-homogeneous production One denotes by Q = f(x;, x2 ..., X,) a h-
functions. homogenous production function. If 2 > 1,
A function f of a multiple variables x;, x;, ..., the function exhibits increasing return to
X, 1s a h-homogenous function (or scale; if 4 < I, it exhibits decreasing return to
homogenous of degree h) if scale; if 4 = 1, it exhibits constant return to
(1.1) fltxy, txy, ..., tx,) = thf(x1, X2, wey Xn), scale. A homogenous function of degree / is
for any given positive constant ¢ and some often called /inearly homogenous.
constant s, where / is the degree of f.
A h-homogenous production function is a Cobb and Douglas (Cobb and Douglas, 1928)
production function homogenous of degree /4 defined a 2-factor production function (CD
(a h-homogenous production function). This production function) of the form
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(1.2) Y=bL'C"™*,
where L represents the labor input, C is the
capital input, b the total factor input and Y the
total production. Douglas was looking for a
function which estimates the relationship of
an output to inputs of the workers and capital.

A generalized CD production function is of
the form
(1.3) Q(x) = bxy'xy? . xy ",

x = (xq,%, ..., X, )ERY,
with b a positive constant and a;, i€1,n, non-
zero constants. The function Q is
homogenous of degree h = Z]'-’zl .

Arrow, Chenery, Minhas and Solow (Arrow,
Chenery, Minhas and Solow, 1961) defined
another 2-factor production function called
the ACMS — production function,

/ 1

(14)Q =FlaK"+(1—a)L]r
where Q' is the output, F is the factor
productivity, a is the share parameter, K, L are

the primary production factors, r = s=1 and
s

s = is the elasticity of substitution.

1-r

There is also a generalization of ACMS
production function as follows:

h
(1.5) Q' (x) = b(Z}  af x[ )7,
x = (x1,%2, ..., X, )ERY,
where a;, b, h, p are constants, b, h > 0, p < 1
and a;, p # 0.
For each production function Q = f{x;, xa, ...,
Xp) it is possible to define a non-parametric
hypersurface of an Euclidean (n+1/)-space
E"" endowed with the canonical euclidian
structure,
XY=X Y 1rxy 2t XYy Xt Vv,
X=(X1X2. Xn+1),s

y=(y1¥2..Yus1), X, ye E",

given by

L is called a production hypersurface (Chen,
2011). If n=2, then L is a production surface.

Chen in (Chen, 2011) studied geometric
properties of A-homogenous production
functions via their corresponding production
hypersurface. Geometric properties of CD and
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ACMS-production hypersurfaces and their
generalizations were proved in (Chen, 2011),
(Vilcu and Vilcu, 2011), (Glen, 2011).

A production function Q is called quasi-sum
(Chen, 2012 (2), (3)) if there are continuous
strict monotone functions 4; - Ry — R, iel,n
and there exist an interval / c R of positive
lenght and a continuous strict monotone
function F : I — R, such that for each xeR’}
we have h;(x;) + ..... hn(x,) € I and

(1.6) Q = f{x1, x2, ..., Xn) =

=F(hi(x;) + ...+ hy(xn).
The quasi-sum production functions are
related to the problem of consistent
aggregation (Aczel, 1996). The generalized
CD production functions (1.3) and the ACMS
production functions (1.4) are examples of
quasi-sum production functions. A quasi-sum
product function is quasi-linear if at most one
of F, hy,..., h, in (1.6) is a non-linear function.

Let M be a hypersurface in E™. For general
references on the geometry of hypersurfaces
please see (Chen, 1973).

Recall the following notations on M: & is the
unit normal at M; g is the metric tensor,
having the coefficients g;; = g (aixi’aix,-) with
(g") the inverse matrix of (gy); dV is the
volume element; /; are the coefficients of the
second fundamental form %; H is the mean
curvature vector; G is the Gauss-Kronecker
curvature.

In (Chen, 2011, 2012 (1), (2)) B. Y. Chen
gives the known formulas for the previous
quantities. More precisely, the following
statements hold:

Proposition 1.1 (Chen, 2011, 2012 (1), (2))
For the production hypersurface M of E™*1,
defined by

(17) L(xlo'"oxn):(xls"-axnﬂf(xla'“)xn)) >
with O = flx;, x5 ... X,) a h-homogenous

1+ 3L, f7

of .
where f; = a—i_,l =1,..n, we have:
L

production function and w =

(1.8) § = == (fu, - fo, =D,
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Lifi=j .
(1.9) g; = 8; + fif, where &; ={O l.;l. ij. is

the Kronecker symbol.
(1.10) dV = /g;jdx; A ... Adx, =wdx; A
e Adxy,

(1L11) g = 8 = 5 fif;»

1.12) hy = ~f;, wh s
(1.12) hy = T fyj, where fiy = 3050
—Lyn 0 (1,

(L.13) H = nzj:lax/ (wﬁ)°
_detithy) 1 .
(1.14) G = R det(f;;).

We point out the geometric interpretation of
the geometric quantities from above.

The Gauss-Kronecker curvature measures
how far is a hypersurface for being flat. When
n = 2, the Gauss-Kronecker curvature is
simply called the Gauss curvature, which is
an intrinsec invariant (depends on the surface
M only). A surface of null Gauss curvature is
a flat surface.

The mean curvature vector H measures the
tension received by the hypersurface from the
ambient (Euclidian space). A hypersurface of
null mean curvature is minimal. Of all
hypersurfaces with a given boundary, the
minimal one has maximum volume.

2. RECENT RESULTS ON &-
HOMOGENEOUS AND QUASI-SUM
PRODUCTION FUNCTIONS

A production function is a perfect substitute
(Chen, 2011) if it is /-homogeneous (linearly
homogeneous) which takes the form
2.1) Q(x1, x2, <oy X)) = 201 Q; X,

for some non-zero constant ay, ...,a,.

A perfect substitute with inputs capital and
labour has the property that the marginal and
average physical products of both capital and
labour can be expressed as functions of the
capital-labour ratio alone (see (Chen, 2011)).

Denote by R = {te R, t > 0} and by R} =
{1, x2, ... Xn) /X1, X2, . Xn > 0}
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B. Y. Chen proved geometric characterization
for a A-homogeneous production function to
have constant return to scale or to be a perfect
substitute.

Theorem 2.1 2012(3)) Let
0= f(X5...,x,) homogeneous
production function of degree d =0 . Then
the production hypersurface of Q has null
Gauss-Kronecker curvature if and only if
either

i) the production function has constant

return to scale, or
ii) the production function is of form:

d
X X

f(xla'"axn):(xl 27"'5”)} 5
xl xl

where ¢(u,,...,un_,) is an (n-1)-input
function satisfying the homogeneous Monge-

(Chen,
be a

Ampére equation: det(¢ij) =0.

Theorem 2.2 (Chen, 2011) A h-homogeneous
production function with more than two
factors is a perfect substitute if and only if the
production hypersurface is flat.

Theorem 2.3 (Chen, 2011) A two-factor A-
homogeneous production function is a perfect
substitute if and only if the production surface
is a minimal surface.

The following corrolaries were proved.

Corollary 2.4 (Chen, 2011) The generalized
Cobb-Douglas  production function has
constant return to scale if and only if the
production hypersurface has null Gauss-
Kronecker curvature.

Corollary 2.5 (Chen, 2011) The two-factor
Cobb-Douglas  production function has
constant return to scale if and only if the
production surface is flat.

Corollary 2.6 (Chen, 2011) The production
hypersurface of the generalized Cobb-
Douglas production function with more than
two factors is always non-flat.
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Similar results have been obtained for ACMS
production functions:

Corollary 2.7 (Chen, 2011) The ACMS
production function has constant return to

scale if and only if the production
hypersurface has null Gauss-Kronecker
curvature.

Corollary 2.8 (Chen, 2011) The ACMS
production function with more than 2-factors
is a perfect substitute if and only if the
product hypersurface is flat.

In (Chen, 2012(1)) B. Y. Chen obtained a
necessary and sufficient condition for a quasi-
sum production function to be quasi-liniar and
completely classified quasi-sum production
functions whose production hypersurfaces
have vanishing Gauss-Kronecker curvature.

Theorem 2.9 (Chen, 2012(1)) A twice —
differentiable quasi-sum production function
with than two-factors is quasi-liniar if and
only if its production hypersurface is a flat
space.

Theorem 2.10 (Chen, 2012(1)) Let f be a
twice-differentiabl ~ quasi-sum  production
function. Then the production hypersurface of
f has vanishing Gauss-Kronecker curvature if
and only if up to translations, f'is one of the
following:

a) f=ax; +2,¢;(x;), with a non-
zero constant and ¢y, ... @, are strict
monotone functions;

b) f=F(ayx1 + azx; + Xz i (%))
where a;, a» are non-zero constants

and F, ¢3 ..., @, are strict monotone
functions;
c) f is a generalized Cobb-Douglas

. . a
function given by f = 9x;"! ...x," for
some non-zero constants 9, aj, ...,0y

: : n — .
satisfying M/_q o; = 1;

e=2
1

d f= (Z?zl aixiﬁ)e_l, where a;, ¢ are
constants with a; # 0 and with ¢ # 1,2;
e) f =a-In(Xl, b;e"*i) for some non-
zero constants a, b;, r.
For quasi-sum production function with 2-
factors the following corollary was given:
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Corollary 2.11 (Chen, 2012(1)) Let f(x, y) be
a twice-differentiable quasi-sum production
function. Then the production surface is a flat
surface if and only if, up to translations, f is
one of the following:
a) a quasi-liniar production function;
b) fis a Cobb-Douglas function, i.e. f =
ax'y"” for some non-zero constant a, r
with r # I
c) f is an ACMS function given by

e=2

ﬂ ﬂ e—-1
f= (axs—z + bys—Z) ,withe # 1,2;
d) f = a Inbe™ + ce”), for some non-
zero constants a, b, ¢, 7, s.
In (Mihai and Sandu, 2012) the following
characterization of #-homogenous production
functions, by considering the minimality of
the corresponding production hypersurface,
was obtained.

Theorem 2.12 (Mihai and Sandu, 2012) A A-
homogenous production function which is a
perfect substitute has minimal corresponding
production hypersurface.

The converse of this result is partially true.

Theorem 2.13 (Mihai and Sandu, 2012) A A-
homogeneous production function whose
corresponding production hypersurface is
minimal is not always a perfect substitute.

Also, in (Mihai and Sandu, 2012) the
minimality of the corresponding production
surface of a 2-factor twice differentiable
quasi-sum production function was studied.
The authors obtained the following:

Theorem 2.14 (Mihai and Sandu, 2012) Let

S x2) = (x5, x2, F(hy(x;) + hs(x2))) be a

twice-differentiable
function. Then:

a) If F, h; and h; are all linear functions, the
corresponding production surface is minimal.

b) If /#; and A, are linear functions, then the
minimality of the corresponding production
surface implies that F is also a linear function
and we have again case a).

c) If F is a linear function, then the
minimality of the corresponding production
surface implies that 4; and A, are non-linear

quasi-sum  production
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functions (i.e. f is a quasi-linear quasi-sum
productions function).

3. NULL GAUSS CURVATURE OF
KNOWN PRODUCTION FUNCTIONS

Let us first consider the two-factor Cobb-
Douglas production function

(B.1) fxy,x2) = By “ixp 7o,

where [} is a positive constant and a; is a non-
zero constant.

Denoting by a(x;) = Bx1%t and by b(x,) =
x,17%1, we have:
a(x) = Pagx ™7,
aCx) = Pay(a; — D72

b)) = (A —ax ™,
blx) = (1 — ) (—ap)x, 71

Recall

of
h=50
_9of
fZ - axy’
a%f
fll = 9x,2’
fo =S
2= 6.X'22'
__0f
fiz - 6)(169('2.

Then it follows that
fi1fzz —f122 =
= Bay (@ — Dy “ Pyl
B “1(1— al)(—a’l)xz_al_l -
—(Bayxy A [(1 = a)xy P =
= B2a,%(a; — 1)%x, 2@~ Dy, ~2a1
_B2a12(a1 _ 1)2x12(a1—1)x2—2a1 =0.

So, k=0, according to the formula (1.14),
where k is the Gauss curvature.

Now, we consider the two-factor ACMS
production function given by

(3.2) f(x1,x2) = (arx1 + azx)".
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The partial derivatives of (3.2) with respect to
Xy, X2 are the following:

fi = h(arx; + ax3)" ay,

fo = h(a1x; + azx3)" ta,,
fir = h(h = Day®(a1x; + ax)" 2,
foz = h(h — Daz?(arx; + azx)" 2,
fiz = h(h — Dajaz(a;x; + azx)" 2.

Then we get
firfaz —f122 =
= hZ(h - 1)2a12a22(a1x1 + azxz)z(h_z) -
—h*(h — 1)%a;%az? (ag %1 + apx;) 22
=0.
Then the Gauss curvature & is zero, according
to (1.14).

The calculations from this section agree with
the theoretical results of Chen (Chen, 2011).

4. PRODUCTION FUNCTIONS WITH
CONSTANT GAUSS CURVATURE

In this section we investigate two-factor
production functions which have constant
Gauss curvature k.

It follows from (1.14) that
b —fh _
A+f+

using the same notations as in the previous

sections for the partial derivatives of first and
second order.

Then we obtain

(A1) firfor — fo = k(L + f2 + fF)

By having in mind the examples from the
Section 3, it is natural to consider the case
when the production function has separable
variables, i.e, f is of the form:

f(x1,x2) = alxb(xy) .
Then
fi= d(xl)l?(xz),
f2 = alx1)b(xy),
=
fir = d(x1)1?(xz),
fiz = alxy)b(xy),
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fo2 = a(xl)B(xz).

Thus, (4.1) can be rewritten as
4.2)

GGr)b()a(e)b () — a2 ()b (xy) =
= k[1+ a*(x;)b%(xz) + a?(x1)b?(x3)]%

Case (i):
constant.

a(x;) = constant or b(x,) =

For example, a(x;) = q = constant (# 0).
From (4.2) we get

0 = k[1 + g%b2(xy)]%
Therefore we obtain k =0 — case studied
by Chen (flat surface) or b2(x,) = —qiz

impossible!

Case (ii): a(x;) # constant and b(x;) #
constant.

Suppose that @ and b are linear functions:
a(x)) =a1xy +az, ag =alx;) #0
(because a(x;) # constant);
b(x;) = byxy + by, by = b(x;) # 0
(because b(x;) # constant).
In this case, d(x;) = b(x;) =0 and from
(4.2) we obtain:
—a?b? = k[1+ a?(b,x, + by)? +
+(ayx; + a)*bi1?.
=

k <0 and

1 1
-z= @
(b1xy + by)* | (a;xy + ay)?
b ai
The last relation is equivalent with
(a1x1 + az)? 1

1
+ e
a? aib? | k

function of x1
(byx + by)°
= 5
function of x;
which implies thata; = 0& b; =0, in
contradiction with a; # 0 and b; # 0 .

Then a(x;) and b(x,) cannot be linear
functions.
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Case (iii): Now, suppose that a is a linear
function of x; and we don‘t know anything
about b:

a(xy) = a1x1 + a,.

From (4.2) we get
—azb?(xy) = k[1 + a?b?(x,) +
+(a1x; + a2)?b* ()%
=
k <0 and

1+ a?b?(xy) + (a;x;, + a)?h%(xy) =
_afb?(xy)
T

Because we are in the case b(xy) #
constant, i. e. b(x,) # 0, we can divide the
previous relation by b(x5):

(a1 + ap)? =

function of x1

1 2p2
= = \/— al (xZ) —-1- a%bz(xz).

b2 (x;) k
function of x3
=
a, = 0
=

a(x;,) = constant, case already studied.

It follows that the case of constant Gauss
curvature reduces to the case of null Gauss
curvature.

5. THE MEAN CURVATURE OF
KNOWN 2-FACTORS PRODUCTION
FUNCTIONS

i) By using symbolic computation in
MathCad version 14, we have
obtained the following expression
for the mean curvature vector of
the two-factor Cobb-Douglas
production function

b 1-b
flxy) =ax'y
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with a a positive constant and b a non-zero b-2(, 2 2.2 2
abx bx +by +x -y

constant. H(x,y) simplify —
3
2
b-1 1-b 2.22b 2.2 2:b-2
d_f(x,y) —>abx -y 2~yb+2~ abx L2 bX i1
dx 2.b42 2b
y y
a-b-xb71
fl(xy) == —— .
b It follows that H cannot be zero, because it is
Y obviously that the denominator cannot be zero
b (b cannot be in the same time / and -7).
L ixy) » 220
y
Y ii) By using symbolic computation in
b MathCad version 14, we have
2(xy) o _abx obtained the following expression
yb+1 for the mean curvature vector of
the two-factor ACMS production
Remember function

f(x,y) = (ax+ by)"

2 2
W= \/1 +fxy) + R2(xy)" where a, b and % are non-zero constants.

Then, in our case: We write below the final result, the
denominator of the mean curvature H(x,y) is:

2.2 2b 2,2 2b-2
a b -x a b X
w = + +1 h 2 2
j y2-b+2 y2-b (a-x+ b-y) -h-(a +b )-(h -1
fl(x,y) It follows that H=0 if and only if ~=1.
glixy) i=————
b b-1 If b=1I-a, i.e when we consider the original
gl(x,y) = 2 ACMS production function (see Arrow K. J.,
b alpZ 2 22 22 Chenery H. B., Minhas B. S., Solow R. M.,
Y e 2b 1 1961), the denominator of the mean curvature
H(x,y) is:
2(x,
g2x,y) =By
w 2 h-2
h-(h - 1)-(2~a —2a+ 1)~(y +ax—ay)
b
2(x,y) = abx For this example, H=0 if and only if h=1.
2,2 2b 2.2 2b-2
b+l |a b X a b X
. j 2be2 b ! Then, we have proved by straightforward
calculations that the production surfaces

corresponding to usual 2-factors production

Denoting by #1(x,y) and h2(x,y) the partial functions are not minimal.

derivatives of g/ with respect to «x,
respectively g2 with respect to y, from the
relation (1.13) we have that H(x,y) is the
mean average of 41 (x,y) and h2(x,y).

The final value of H(x,y) is:

This fact means that we cannot get similar
results from the view-point of minimality as
those obtained by Chen about Gauss
curvature (flatness) (for example Corrolary
2.5 from Section 2).
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