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Abstract

In mathematics, the term "differential” refers to several related notions derived from the early days of mathematical
analysis, which became rigorous later, such as infinitesimal differences and the derivatives of functions. The notion is
used in various areas of mathematics such as algebraic geometry, algebraic topology, calculus, differential geometry eftc.
The term differential is used non rigorously in calculus referring to an infinitely small ("infinitesimal”) variation change
in a quantity. For example, if one considers x as a variable, then a "bigger" change in the value of x is often denoted by
Ax. The differential dx is an infinitesimal change of the variable x. The concept of an infinitely small or infinitely slow
change is very useful, and there are several of mathematical tools to make it precise. Using calculus, it is possible to
relate the infinitesimal changes of several variables to each other using function derivatives. In this article we present
the notions of Gateaux and Fréchet differentials of a multivariable function with their properties, geometric interpretation

and applications to function approximations.
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INTRODUCTION
The derivative of a one variable function

Definition 1. A function f: I — R is derivable at
a point a € [ if the following limit exists:

i f@tn - f@
=

lim = f'(a) ER

®
. ’ af
In this case, we also denote f'(a) = ~ (a).

Remark 1. If f'is derivable at the point a € |
then f'is continuous at a, because:

lim f(a+h) = f(a) =0
implies that:
lim f(x) = f(a).

Geometric interpretation of the first order
derivative of a single variable real function is
presentet in Figure 1.

516
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Figure 1. Geometric interpretation of the first order
derivative of a single variable real function
(https://www.superprof.co.uk/resources/academic/maths/
calculus/derivatives/physical-interpretation-of-the-
derivative.html)

The graph of f has a tangent at the point
(a, f(a))

y=fla)=f(akx-a) 2
Also we can define the linear application T: R —
R, T(h) = f'(a)h, which in a vicinity of the
point a represents an approximation of the
f(a+ h) — f(a), because:
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h) —
R RRIACEL
implies that:
. fla+h) —fla)-TH)
lim =0
h—-0 h

Thus
lim f(a+h) - f(a) =T(h) =0,
which implies that:

fla+h)—=f(a) =T(h) + o(h) (3)

where: o(h) is a function with the property
limo(h) =0
h-0
Remark 2
fla+h) — f(a) = T(h), when h - 0

Remark 3. The notation Ax := h is mainly used
in practice for approximations, being asimilated

with an increase of x. With this one can write:

fla+ Ax) — f(a) = f'(a)Ax, when Ax - 0

“)
And, even further
Af(a) = f'(a)Ax, when Ax - 0 ®)
which means that:
f() = f(a) + f'(a)(x — a), whenx > a

(6)

MATERIALS AND METHODS
In this paper we will consider x =
(%1, X2, ey Xn) and f=fx)=
g, %2, 0 Xn)
Definition 2 (Colojoara, 1983; Gateux

differentiation) Let U € R™ be an open set,
f:U — R a function and u € U. We say that f'is
derivable on the direction a if the following
limit exists:

 fx+hw)—-f(x) _of
m— "=

}11—>0 h ou

() @)

Ifu=e =(00,..01,0..0), where 1 lies on
the i-th position, then we denote for simplicity
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of _of

ox;  Oe;’

i=1n

®)

Definition 2. We say that T:R™ > R™ is a
linear application (or a functional, or a
morphism of R vectorial spaces) if it has the

property:

T(ax + By) = af (x) + Bf(¥),

vx,y E R, a,f ER (©)]
We denote by L(R™, R™) the space of all such
functionals.

Definition 3. (Nicolescu, et al., 1971; Fréchet
differentiation) Let U € R™ be an open set,
f:U — R a function and a € U. We say that f'is
differentiable at the point a if there exists a
continuous functional T € L(R", R™) such that

_ f(x+ha) - f(x) - hT(a)
m =

}11_)0 A 0 (10)
In case of existence, we denote
T(a) :=df(a) (11)
Remark 4. If T € L(R", R™), then:
dT (a) = T(a) (12)
because:
. T(x+ha)—Tx)—T(a)
lim
h—0 h
. Tx)+hT(a) —T(x) —T(a)
= lim
h—0 h

Remark 5. If fis differentiable then there exists
@: U = R™ such that

f)=f@+Tkx—a)+|lx—allp),

vx €U (13)
and
lim @(x) =0 (14)
x—-a

Lema 1. In the conditions from above the
application T is uniquely determined.

Proof. We assume the existence of another
linear application T € L(R"™, R™) such that

f(x) =f(a) +Ti(x —a) + |Ix — allp(x), vx
eEU
where

limy(x) = 0.
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By denoting
T-T,=T, € L(R",R™),
and
a(x) = o) —PXx)
we have
T,(x —a) = ||x — alla(x), Vx €U
where:

lima(x) = 0.
x—-a

For h € R", fixed, and t > 0 sufficiently small,
taking x = a + th we get

T,(th) = ||th|| a(a + th)
And due to liniarity one has

T2(h) = ||kl aa + th)
Thus, for t — 0 it results

T,(h)=0,YvheR"

Therefore

which shows that
T = Tl
and the unicity is proved.

Theorem 1. (Stanasila, O. (1981), Boboc, N.
(1999), the connexion between Gateaux and
Fréchet differentiation) Let f:U — R be a
function defined on an open set € R™ .

i) Iffis differentiable at a point a € U then
fis continuous in a. Furthermore, there exists

d . .
d—];(a) for every versor s € R™(i.e. vector with

the norm equal to 1). In particular, there exist all
the first order partial derivatives

i =d 5
E(a) = df (a)(s) (15)
and
of o
5 @ = df@(e),i =T
where: E = {e;| i = 1,n} is the canonic base

of R™.

(16)

ii) If f € C1(U) (i.e. the space of derivable
functions defined on U, with all the partial
derivatives continuous) then f is differentiable
on U. Particularly, every elementary function is
differentiable.

Proof.

i) On one hand, for any convergent
sequence (x,) € U, x, - a, we have

) = f(@) + df (@) (x, — @)
+ llxn — allp(xy), Vn € N
Therefore, if n — oo, it results

f(xn) = f(a@).

Thus, fis continuous in a.

On the other hand, choosing r > 0 with the

property that B(a,r) c U, then for any t #

0,|t| <r,onehas d(a+ts,a) <r,so
a+tselU, Vk=1,n.

Furthermore

fla+ts)—f(a)

t
_ df(@)(s) + lltsllp(a + ts)
t

= df @) + D p(a+ ts)

Thus,
H%M = df (a)(s)
which means that
df )
s (@) =df(a)(s), fors=e,
i=1n
As aresult:
I (@y=d =Tn
5 (0 = df (@), i=Tn
ii) One has
fx)—f(a) =

[f Cer, x0, ooy xp
) - f(al! X2, X35 eees xn)]
+[f(aq, x2, %3, ., Xn)
—f(ay, az,x3, ., x)] + -+
+ [f(all az,...an_1, xn)
—f(ay, az as, ..., an)]

= (X1 —aq) 0_xl (1, %2, X3, ey X))

of
+ (XZ - aZ) a_xz (‘xll EZ! X3y wen xn)
+ cee

of
Gt = an) 3 (61, Xz, X5, )
n

(we applied Lagrange’s theorem for finite
increases for each term, finding &; between a;
and x;,i = 1,n).
Now, we define the liniar application

T:R" - R,

- 0
1o = 2 (ay
From here -
- 0
)= Y (@) - a)
=1 '

thus,
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fO-fl@-Tkx-a)

lim
x-a llx — all
af af
(1 —ay) [5 (&1, %2, X3, w00y X)) — ;(a)]
. 1 1
= lim
x>a llx — all
— a) [$£ (@1, 2,5, 0 %0) = 3= (a )]
+ lim
x>a llx — all
af af
(Gt = @) [2L (@3, %0, X3y s Qe ) — o (a)]
. n n
+ lim
x>a llx — all

Every limit from above is equal to 0, as the

quotients
Xi — 4 I
i=1n

llx —alll =
and because f € C1, its partial derivatives are
continuous and the straight brackets tend to 0,
x — a (which means that x; - a;,, i = 1,n).
In conclusion,

I fx)=f(a)=T(x—a)
im =0
x~a llx — all

which shows that f is differentiable at any point
a€U.

Theorem 2. (The formula for computing the
differential) Let f: U — R be a function defined
on an open set U c R™ , differentiable at a point
a € U. Then the following formula takes place:

n
d

af@ =Y L @pr a7

= o
(equality of liniar applications)
Proof.
Two liniar applications are equal if and only if
they coincide on the canonic base E = {¢;| i =
1,n}. Applying this property, the desired
relation is proven from the fact that

pri(e) = 6y

s (L ifi=]
A {0, ifi#j
is the Kronecker symbol.

Thus, for any h = (hy, hy, ..., h

write
n af
ha) = Zl 3 @h
i=

where

) € R™ one can

df (@)(hy, hy, .., (18)

We can write this relation more conveniently in
the following way: we observe that the
projections pr;: R™ — R, defined by

pri(x) = x;
are liniar applications, so

d(pr(a) = pr;.

Thus

dx;(a) = pr;
And the desired formula can be written:

df (@) = Z 5, (@) (19

Remark 6. The function f: R? - R,
fey) = {y f Goy) # (0.0)
0, if (x,y) = (0,0)

(20)

is not continuous in (0,0), because

1
llm L f(x,y) = 11151+; =400
y x3

but it has partial derivatives at (0,0), as

of f6O)—f(00)
7z (00) =lim t =0

and

f(go)_l w=o
t—»o t

Remark 7. In practice, one may denote the
increase of the variables x; , resp. of the function
£ at the point a, with Ax;, resp. Af (a) and one
may write:

n
i}
Af(a) = Z—f(a)Axl- ,when Ax; - 0,
L 0x;
i=1
i=1n
which means that

(21)
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f(x) = f(a) +df(a)(x —a),when x - a

(22)
Remark 8.
n 6f
I8 (@] ~ Z 5 (D%
i=
and using module inequality we obtain
n
aof
af@] < )" |5 @| 18w (23)
= o
when Ax; = 0
Remark 9. The vector
aof aof of
grad.f = (a_xl (a)'a_xz (@), ... 'E (a)
e R (24)

is called the gradient of f at the point a and the
set

Tof ={x € R"| df (@) (x) = 0} (25)
is called the hyperplane tangent at a at the
hypersurface of equation

fG) = f(a)

Geometric interpetation of the differential is
presentet in Figure 2.

Tangent plane at (x, v, f(x, ¥))

Linear approx X

I
flx + Ax, y|+ Ay) ¢ i Graph of f

(x + Ax, ¥ + Ay')(x’ Y)

Figure 2. Geometric interpretation of the differential of
multivariable function
(https://math.libretexts.org/Bookshelves/Calculus/Ma
p%3A_University_Calculus_(Hass_et_al)/13%3A_P
artial_Derivatives/13.6%3A_Tangent_Planes_and_Di
fferentials)

Exemple. f:R3 > R, f(x,y,2z) = x3 + xyz

The differential of fat the current point is:

520

of

d
W=£m+f

@dy+£dz

= (3x2 + yz)dx + xzdy + xydz

of

In particular, for every
a = (a;,a,,a3) and h = (hy, hy, h3) € R3
one has
df(a)(hy, hy, h3)
= (3a? + azaz)h, + ajash,
+ a;a,h;

Also the increase of f'is:
Af = (3x% + yz)Ax + xzAy + xyAz

APPLICATIONS

For more details and applications see Martin, O.
(2008), Serban S et al., (2015) and Tudor, H.
(2008).

Practical example 1: Aproximate cos 61° using
differentials.

Solution:
Considering the function y = cos x
= dy = —sinx dx
= Ay = —sinx Ax
. T
x =60 = 3 rad
Ax=61"-60"=1"=—
x=6 60 180 rad
61° = cos 60" + Ay ~ 1= 3T < 0,484
cos = cos Y3530 .

Practical example 2: Consider a sphere with the
radius R=10 m. Determine the aproximative
increase of the volume, if the radius increases
with AR = 1m.

Solution:
41R3
V= 3 dV = 4 = nR?*dR = AV

~ 4TR?*AR =~ 1256 m3

Practical example 3: The radius and the height
of a right-circular cylinder are measured with an
error of at most 2%. Approximate the maximum
percentage error in the volume.

Solution:
av
Fe = 2nrh
2
V=mnr<h= av .
FT r
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=20+
“or YT on

= dV = 2arhdr + nr?dh
= AV = 2nrh Ar + nr?Ah

AV 2Ar+Ah_60/
N R

Practical example 4: The lengths of a rectangle
are measured with an error 1%. Estimate the
maximum percentage error in the area.

Solution:
A=1L-1
6A_l
oL _o4, .94
= a_A_L:dA 0LdL+0ldl
al —
= AA = [ AL + LAl
ad AL+Al 1% + 1% = 2%
:_ — — =
" I ; o+ 1% ()

Practical example 5: The lengths of a triangle
are measured with an error 1%, and the angles
are measured with a precision of 2%. Estimate
the maximum percentage error in the area.
Solution:

Considering a triangle MPQ the area is given by

the formula: A = %mp

(we measure the sides m = PQ, g = MP and the
angle P, where P is the widest acute angle)

JdA  gsinP
om~ 2
JdA msinP
52 —=—
dq 2
JdA mgq cosP
)
dA aAd +6Ad +6 dP
= = — JE— P
am T 9“1 5p

0A 0A 0A
>AA~_——Am+—Aq+ AP
am

dq JaP

AA Am+Aq+Pt p AP
= — &~ — 4+ — N
m q C‘g()P

A
=0,02(1 + Pctg(P)) < 0.04

Practical example 6: p = %,

Am = the error on the scale,
AV = volume's measurement error, Ap =?

Solution:
The differential of p is:

dp =22 d4m + 9P qy
pa av

dp =Vdm—WdV
The increase of p is:
A 1A mAV
Y v m-—5

VZ
If needed:

|Ap| < IAmI tz IAVI

CONCLUSIONS

Differentials are a powerful and useful
instrument to study function approximations.
This technique is universal and can be applied to
any formula that involves elementary
mathematical functions, and for any scientific
field, from pure mathematics to engineering.
Differentials, in general, have wide applications
in science: deduction of different formulas and
equations, motion description, calculation of
profit and losses in economics, differential
equations and partial differential equations,
mathematical modelling etc.
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