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Abstract 
 
The dramatic increase in the amount of waste produced globally has an undeniable negative effect on the environment. 
The accelerated pace of urban development, the increase in consumption and the large scale of industrial activities have 
led to a rapid accumulation of waste in more or less proper waste dumps. All member states of the European Union are 
required to comply with waste management regulations, which primarily provide for the prevention of illegal dumping of 
any type of waste, its disposal in compliant landfills and their regular monitoring. In our ongoing project we aim to 
support waste management activities by proposing practical ways for Earth observation data to be used in off-site waste 
detection and monitoring of known landfills. Our research focuses on assessing the state of the art in earth applications 
techniques such as artificial intelligence/ machine learning that are currently being used for waste management and 
proposing approaches for building up a portfolio of scalable solutions that will support waste management not only in 
Romania but also at a regional, European, or global level. "This work was supported by a grant of the Ministry of 
Research, Innovation and Digitization, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PTE-2021-0432, within 
PNCDI III". 
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INTRODUCTION 
 
In the last 100 years global population increased 
4 times, with 8 billion people reached in 2022 
(World Population Prospects 2022: Summary of 
Results, n.d.). This drastic increase combined 
with changes in consumption and socio-
economic patterns set the premise for 
appearance of illegal and unregulated dump 
waste sites. What a Waste 2.0 (Kaza, 2018) 
report estimates that until 2040 the global 
production of waste will be around 3.4 billion 
tons.  
In Europe, in 2020 the waste production was of 
4.808 kg/capita, from which 505 kg is classified 
as municipal waste (Eurostat, 2022). Due to 
strict regulations in waste management agreed at 
European Union level, Romania has an issue 
with illegal waste dumps resulting from various 
activities or from illegally imported waste. 

These dumps are a concern for human health and 
they also pose a threat for the environment with 
various risks associated with them, from air 
pollution to the spread of diseases transmitted by 
mosquitos (Environmental Center, 2021). Also, 
poorly managed wastes can cause infiltration of 
leachate in aquifers and the contamination of 
drinking water sources or rivers. Earth 
Observation (EO) data refers to continuously 
obtained data needed to improve the detection of 
illegal waste dumps that due to various factors 
can’t be detected with traditional in field 
observations.  
To perform more in-depth and least intrusive 
analysis of EO data, Deep Learning (DL) 
techniques were adopted to work with EO data, 
especially multi-spectral imagery. In the last 5-6 
years a lot of progress was made in the field of 
DL and Computer Vision (CV). An approach to 
identify such waste dumps is proposed, which 
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uses Sentinel 2 data with a semantic 
segmentation model. 
 
MATERIALS AND METHODS 
 
Working with satellite images for Semantic 
Segmentation (SS) applications has one major 
deficit, which is the lack of already existing data 
masks for various tasks. Especially with a task 
with a very high specificity, like dump waste 
identification. Our approach in resolving this 
issue was to create masks from already existing 
Corine Land Cover (CLC) dataset that has a land 
cover class of waste dumps, containing 1727 
training sites at European level (EEA, 2018). by 
detailed verification of dump waste sites from 
Romania, it was found that CLC database is 
vastly inaccurate, showing a lot of 
inconsistencies between ground truth and 
polygon masks. Also, the number of waste sites 
covering the national territory was very small 
(11 polygon with dump sites). To tackle this 
issue and have the possibility to control the 
quality of polygon masks corresponding to 
waste dumps, a manual identification and 
vectorization procedure was conducted. 
Although manual vectorization is a time-
consuming task, it has a very high accuracy. 
Using QGIS and high-resolution imagery from 
Google Satellite a total number of 344 dump 
waste masks were created. Because the 
identification of waste dumps was intended to be 
done on 2 different datasets, Sentinel 2 and 
Sentinel 2 images enhanced through 
SuperResolution (S2 SR) techniques inhouse, 
the waste dumps were filtered based on their 
area extent. S2 SR data was created based on 
Super Resolution Generative Adversarial 
Network (SR-GAN) inspired algorithm that was 
trained with SPOT-6 imagery to enhance 
Sentinel 2 imagery. The SR-GAN algorithm 
uses a generator-discriminator dual scheme, 
where the generator uses a ResNet structure with 
several residual blocks. The resulting data SR S2 
data have a resolution of 2.5 meters, displaying 
an upscale factor of 4x. For S2 SR all the waste 
dump masks were used; meanwhile, for S2 just 
the masks with an area larger than 0.2 ha were 
selected. S2 data was the best option due to its 
higher spectral and temporal resolutions and 
long mission time (>5 years). To deal with the 
fact that vector masks were created from high-

resolution imagery and the data for semantic 
segmentation was of medium resolution, the 
masks were validated with the S2 data after 
creation, to achieve a high degree of correlation 
between the two. To create the training data, 
images from June till September 2022 with 
cloud coverage smaller than 10% were 
downloaded. The process for creating image 
tiles (or patches) was conducted using Python on 
overlaid S2 bands. The image tiles were created 
with dimensions of 120 x 120 pixels and 288 x 
288 pixels for S2 data and with 126 x 126 pixels 
for S2 SR. Only 10 spectral channels out of the 
13 available were used (the 60 m bands were 
filtered out due to lower spatial information), 
and all were resampled to 10 m resolution (Table 
1). To increase the number of total training data, 
simple augmentations were implemented with 
the help of Albumentations (Buslaev et al., 
2020). Augmentations are a set of data 
transformation to increase the training data 
when the data is scarce. Those augmentations 
consisted in one Vertical Flip, one Horizontal 
Flip and a Transposition of the original image, 
resulting in a total of 1376 images. 
 

Table 1. S2 bands used for training 

Sentinel 2 band Wavelength (nm) 
Band 1 442.2 - 442.7 
Band 2 492.3 - 492.7 
Band 3 558.9 - 559.8 
Band 4 664.6 - 664.9 
Band 5 703.8 - 704.1 
Band 6 739.1 - 740.5 
Band 7 779.7 - 782.8 
Band 8 832.8 - 832.9 

Band 8A 864.0 - 864.7 
Band 9 943.2 - 945.1 

Band 10 1373.5 - 1376.9 
Band 11 1610.4 - 1613.7 
Band 12 2185.7 - 2202.4 

 
The accuracy of several SS models was assessed 
in the identification of waste dumps to select the 
best performing model: U-Net, ResUnet, 
PSPNet with different backbones or without. U-
Net is a fast and precise convolutional network 
architecture for image segmentation tasks 
(Ronneberger et al., 2015). The U-Net 
architecture represents a Fully Convolutional 
Network (FCN) which is composed by two sides 
forming a U shaped network: the contracting 
path on the left side and the expansive path on 
the right side. The contracting path (also called 
the encoder) follows a convolutional network 
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architecture with 3 x 3 convolutions, followed 
by ReLU activation functions and 2 x 2 max 
pooling operations (Figure 1). The expansive 
path, also called the decoder, which is the 
symmetric part that reconstructs the precise 
localization of the desired features using 
transposed convolutions (up convolutions), 
ReLU activations and a final 1 x 1 convolution 
to reconstruct the data to the original shape of 
input (same height, width, number of channels). 
 

 
Figure 1. U-Net architecture 

 
ResUnet is a U-net like architecture that uses 
residual units instead of simple neural units 
(convolutions followed by activation functions) 
to tackle the problem of vanishing gradients. 
Residual units are composed of 3 basic 
elements: BatchNormalization, ReLU activation 
function and convolutional layers (Figure 2). 
The main advantage of ResUnet is that with 
propagation of low level and high level 
information, the propagation is made without 
degradation, thus facilitating the design of a 
network with fewer parameters but comparable 
in performance (Zhang et al., 2017). 
PSPNet or Pyramid Scene Parsing Network, is a 
SS model that asigns for each pixel in the image 
a category label using complete understanding 
of the scene. The main advantage of the PSPNet 
is that it uses dilated convolutions alongside a 
pyramid pooling module. The dilated 
convolutions are convolutions with a specified 
sparsity which increases the receptive field. The 
Pyramid Pooling Module is the central piece of 
the model, that captures the global context of the 
input image. Basically, the module upsamples 
and concatenates the features maps at different 
dimensions (1 x 1, 2 x 2, 3 x 3, 6 x 6) after which 
the concatenated features are convolved and 
lastly upsampled with a 8x bilinear upsample to 

create the final prediction (Zhao et al., 2016). 
This convolution followed by the upsampling is 
the decoder of the PSPNet (Figure 3). 
 

 
Figure 2. ResUnet residual unit 

 

 
Figure 3. PSPNet architecture 

 
For the identification of optimal 
hyperparameters such as: learning rate, 
optimizer, loss function, Optuna Framework 
was implemented for studying different 
scenarios using study/trail schema. This 
study/trail schema means that a study is created 
with all the parameters to be tested on a defined 
number of epochs with the desired model or 
models with a limited number of trials. Optuna 
is an automated framework that searches for the 
optimal hyperparameters and is not constricted 
by the framework where it is deployed: 
PyTorch, TensorFlow, Keras etc. It has an 
intuitive code structure and object-based 
orientation which makes it suitable for 
identifying the values to be used in finetuning 
the hyperparameters (Akiba et al., 2019). 
 
RESULTS AND DISCUSIONS 
 
Testing different approaches and sets of 
hyperparameters with Optuna led to the 
conclusion that the most important 
hyperparameter between the learning rate, 
optimizer and loss functions was the learning 
rate with a percentage of over 60% in most of 
the models tested. Testing U-Net with various 
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backbones based on feature extractors (ResNet 
and DenseNet) it is observed that IOU score 
values are kept at a minimum (under 0.01) 
(Figure 4). 
 

 

 
Figure 4. IOU score (A) and Loss function (B) for Unet 

with DenseNet 201 backbone 
 
This fact can be explained by the lower learning 
rate that keeps the learning procedure at a 
minimum along the epochs. Even the network 
gradually improves this means that the learning 
procedure should be a longer one with too many 
epochs for training. Therefore, deeper networks 
(up to 60 million parameters to be trained on 
ResNet152) weren’t tested.  ResUnet gives the 
most promising results with values of IOU 
greater than 0.2 on a minimum of 50 epochs for 
training. The advantage of ResUnet is the 
propagation of information from low levels to 
high levels without degradation. Even if 
ResUnet has promising results, in Figure 5 a 
classic overfit scenario is presented, where the 
train metric kept increasing with the training 
time, but the validation metrics were stuck at a 
minimum level. This is a classical issue where 
learning rate plays a major role, with a value too 
small for an optimum learning procedure. The 
loss function that achieves the best results is a 
combination of a binary focal loss + Dice Loss, 
where binary focal loss is meant to discriminate 
between hard examples and easy examples, with 
a balance between positive and negative 

examples. Also, the Dice loss is a loss function 
adopted specially for semantic segmentation 
tasks, because is measures the similarity 
between two samples and works especially with 
imbalanced datasets, which is the case of binary 
semantic segmentation tasks. The combination 
of the two loss functions alongside a learning 
rate close to the optimum range leads to the best 
values for: validation IOU score, F1 (Dice) a 
score and Loss value (Table 2) (Figure 6).  
 

 

 
Figure 5. IOU score (A) and Loss function (B) for 
ResUnet with Binary Cross-Entropy + Jaccard loss 

 

 

 
Figure 6. IOU score (A) and Loss function (B) for 

ResUnet with Binary Focal +Dice Loss 
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Table 2. Results of different models and hyperparameters 

 

 
 

Model Optimizer Learning 
rate 

Loss function Epsilon Epochs IOU 
score 
(max) 

Loss 
value 
(min) 

Val F1 
score 
(max) 

ResUnet Adam 0.0001 Binary Cross-
Entropy + Jaccard 
loss 

0.0000001 50 0.264 0.901 0.402 

ResUnet Adam 0.001 Binary focal + 
Jaccard loss 

1 75 0.215 0.829 0.350 

ResUnet Adam 0.001 Jaccard loss 1 50 0.163 0.838 0.278 
ResUnet Adam 0.001 Jaccard loss 1 100 0.235 0.766 0.377 
ResUnet Adam 0.001 Binary Focal + Dice 

Loss 
1 75 0.288 0.619 0.445 

ResUnet Adam 0.001 Dice Loss 1 75 0.238 0.619 0.382 
U-Net +  
DenseNet 
201 

Adam 0.0001 Binary Cross-
Entropy + Jaccard 
loss 

1 34* 0.008 1.396 0.015 

U-Net + 
Resnet54 

Adam 0.0001 Binary Cross-
Entropy + Dice Loss 

1 64* 0.008 1.334 0.015 

U-Net + 
ResNet 152 

Adam 0.0001 Binary Cross-
Entropy + Jaccard 
loss 

1 38* 0.008 1.144 0.015 

PSPNet Adam 0.0005 Binary Focal + Dice 
Loss 

1 120 0.001 1.265 0.003 
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Prediction Ground truth Natural Colors 

  

 
Figure 7. Inference procedure with prediction, ground truth and natural color depicted waste dump area 
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For the model validation task, data was derived 
from the initial pairs of Sentinel 2 images and 
dump masks. 25% percent (344 polygons) of the 
total data was randomly assigned for validation, 
Figure 7 shows an image patch in the inference 
step with a prediction of an administrated waste 
dump. The model recognizes the spectral pattern 
and shape of dumps that respect the norms in 
waste dump management and tend to have a 
dense material concentration. On unstructured 
small illegal waste dumps, the model didn’t 
recognize the dumps from the southern part of 
the first image tile. This fact is due to the weak 
concentration of materials and therefore a weak 
spectral response with a lot of mixing from the 
surrounding area. On the second row another 
image tile shows how the model behaves in 
identifying a well-structured waste dump. 
 
CONCLUSIONS 
 
ResUnet is a SS model that identifies very well-
structured dumps with consistent shape and 
spectral response. Due to the fact that the 
training set wasn’t divided into categories of 
dumps, but on the criteria of area, the model was 
unable to differentiate between illegal waste 
dumps that have different properties and 
structure and managed waste dumps. Also, more 
hyperparametrization is needed for the Unet 
with different backbones to achieve more 
consistent results with higher accuracies. Even 
if ResUnet gives promising results, more models 
should be tested in the near future on a more 
robust training dataset that will be more 
rigorously created, with various approaches for 
limiting uncertainty. Examples of models to be 
tested are Mask R-CNN or DeepLabv3. 
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