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Abstract 
 
In the last time, pharmaceutical residues have been discovered in almost all environmental matrices in the world, 
especially in surface water (lakes, rivers, seawater). The consumption of medicinal products contributes to the emission 
of pharmaceutical residues into the environment mainly through human (hospital effluents) and farm animal excretions. 
Once pharmaceutical residues reach in surface water, they also become incorporated into aquatic organism having a 
toxic effect on them. The biochemical response is dependent by the level of concentration and by the exposure time which 
largely contributes to the appearance of oxidative stress due to changes in the levels of antioxidant enzymes. In fish, due 
to detoxification and biotransformation capacity, the liver is the most important metabolizing organ, thus, one of the main 
defences against pharmaceutical residues. Analysis of biochemical indicators includes superoxide dismutase (SOD), 
glutathione S-transferase (GST), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), 
catalase (CAT) and malondialdehyde (MDA). In the near future, the development of "green" and eco-friendly 
pharmaceuticals with low persistence in water surface, bioaccumulation and toxicity could help minimize accumulation 
in the aquatic environment. 
 
Key words: antioxidant enzymes, fish, pharmaceutical residues, oxidative stress, water surfaces.  
 
INTRODUCTION 
 
The quality of aquatic environments is compro-
mised by the entry of toxic substances mainly 
from the anthropogenic activities. Pharma-
ceuticals products are considered one of these 
toxic substances during the last two decades due 
to the presence, abundance, and possible effects 
of these products in aquatic ecosystems (Jijie et 
al., 2021; Strungaru et al., 2021). 
Biologically active pharmaceutical compounds 
are produced and also used in a very high 
quantity where their use and diversity are 
increasing every year (Shreenidhi et al., 2021).  
With over 600 pharmaceuticals detected in the 
surface waters, at the global level, those from the 
category of analgesics, antidepressants and 
antihypertensive drugs are preponderent 
(Furduson et al., 2019; Shuraiqi et al., 2021). 
Within these classes, diclofenac (DCF), 
fluoxetine (FLX) and propranolol (PROP) are 
among the most used and prescribed drugs, and 
therefore some of the most frequently detected 
compounds in the aquatic environment, at 
concentrations ranging from ng/L to μg/L 
(Bonnefille et al., 2018). 

The residues of these drugs are discharged into 
the aquatic environment; therefore, they can be 
found in wastewater, treated wastewater, surface 
water, groundwater and drinking water, in 
concentrations generally low in ng/L or μg/L, 
but having effects due to their continuous 
discharge into the aquatic environment (Archer 
et al., 2017; Pedrazzani et al., 2019). 
In the last years the monitoring of 
pharmaceuticals in the aquatic environment is 
becoming a priority for competent authorities. 
Concerning to the analytical determination, the 
mainly used techniques are based on 
chromatographic mechanisms (gas 
chromatographic and HPLC) coupled to specific 
mass spectrometry and spectrophotometric 
detectors (Rivoira et al., 2015) which permitted 
the determination of some environmental effects 
of pharmaceuticals and can be established in the 
μg/L and ng/L concentration ranges (Lindsey et 
al., 2001; Kanda et al., 2003; Daughton, 2004; 
Larrson, 2014). Through these techniques can be 
determined and quantified approximately 3000 
biologically active compounds in the 
environment (Richardson, 2006; Richardson & 
Ternes, 2014). 
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For the wild fish population, the pollution with 
pharmaceutical products and residues can 
conduct to reduced species richness and even at 
the loss of stocks in habitats. 
In the evaluation of the ecological status of 
aquatic environments are used fish because they 
are very sensitive to anthropogenic impacts and 
for this reason some of them can be chosen as 
bio-monitors. 
Bioindicators serve as a measurable indicator of 
a biochemical, physiological, toxicological, or 
ecological process or function that has been 
correlated to effects on organisms, populations, 
or ecosystems (Burger, 2006). One of the most 
important used bioindicators in the aquatic 
ecosystem is represented by fish because they 
have an important ecological function at the 
level of trophic chain. Fishes can sensitively 
reflect the concentrations of contaminants in the 
environment in which they are found (Gallego et 
al., 2021) and making them a tool for detecting 
the effects of pharmaceuticals early generating 
an overview of the state of the aquatic ecosystem 
(Martínez-Morcillo et al., 2020). 
Several studies have been carried out for the 
purpose of choice of the best biomarkers, where 
different responses have been tested in aquatic 
fish species to given pharmaceutical product 
(Recabarren-Villalon et al., 2019). Thus, the 
biomarkers were grouped into three categories: 
biomarkers of exposure, biomarkers of effect 
(which assess the biochemical, physiological or 
behavioural disturbances in an organism) and 
biomarkers of susceptibility (ability of organism 
to respond to exposure to a specific xenobiotic 
substance, including genetic factors) (Oost et al., 
2003; Arango, 2012). 
 
SOURCE OF THE PHARMACEUTICAL 
RESIDUES IN AQUATIC 
ENVIRONMENT  
 
Large numbers of pharmaceutical compounds 
are found in the environment as the result of 
biological degradation by the organism present 
in ecosystems. These compounds have high 
biological activity even at low concentrations to 
the aquatic biota (Nunes et al., 2006) 
The consumed pharmaceutical drug does not 
decompose completely in the body, a small 
amount of drug is excreted through the 
biological system (Winker et al., 2008). The 

involuntary (excretion through body or washing 
off topical medicine) and purposeful (disposal of 
unused or out of date medicine) action by 
humans are the primary reason for the discharge 
of pharmaceutical compounds into the 
environment (Daughton & Ruhoy, 2009). 
Discharge from various sources of 
pharmaceutical wastes are industries, hospitals, 
animal husbandry and many others, whereas the 
dominant source of pharmaceuticals in water is 
urban wastewater emission (Aus der Beek et al., 
2016). 
Once discharged into aquatic environments, 
pharmaceuticals and their metabolites can 
undergo biotic and abiotic transformation 
(degradation) and sorb to suspended particulate 
matter (SPM) and sediments, and in some cases 
accumulate in the tissues of aquatic organisms 
(Ramirez et al., 2009). 
Sources of human pharmaceuticals in sewage 
include patient use in the community, discharges 
from hospitals and, in some cases, wastewater 
from pharmaceutical manufacturing (Gaw et al., 
2014). 
A range of veterinary medicines including 
antibiotics, also registered for human use, is 
used prophylactically and to control disease 
outbreaks in marine aquaculture. Up to 75% of 
the administered dietary dose of a veterinary 
medicine can be lost to the surrounding 
environment. The loss mechanisms include 
dispersal of non-ingested pellets, gill and renal 
excretion of the unprocessed drug, and renal and 
faecal excretion of drug metabolites (Grigorakis 
& Rigos, 2011). 
Animal husbandry and horticulture along rivers 
and in coastal areas may also contribute to 
loadings of pharmaceuticals entering in coastal 
waterways (Kummerer, 2009a; Jia et al., 2011). 
Antibiotics are added to animal feeds and in 
some cases drinking water to treat disease 
particularly in feedlots housing large numbers of 
animals (Kemper, 2008). The use of low doses 
of antibiotics in feed as growth promoters still 
occurs in some regions of the world despite 
being banned in Europe (Du & Liu, 2012). Some 
countries permit the use of antibiotics including 
oxytetracycline and streptomycin on 
horticultural crops (Kummerer, 2009a). 
Pharmaceutical compounds most often 
identified in the aquatic environment belong to 
several classes of human and veterinary 
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antibiotics and human prescription and 
nonprescription drugs such as NSAIDs, β-
blockers, blood lipid regulators, antiepileptics, 
analgesics, and antidepressants (Petrovic et al., 
2014; Radovic et al., 2015; Patel et al., 2019). 
Pharmaceuticals versus other contaminants 
Pharmaceutical contaminants differ from most 
other contaminants according to these aspects 
(Zuccato et al., 2000; Kummerer, 2009b; 
Rivera-Utrilla et al., 2013): 
• having a molecular mass < 500 Da, although 

larger for some compounds, 
• containing chemically complex molecules 

with a large variety of structures, shapes, 
molecular masses, and functionalities, 

• having more than one ionizable group, 
• a degree of ionization that depends on the 

medium’s pH, 
• have lipophilic properties, 
• persistence in nature, accumulate in life 

forms and remain biologically active 
(naproxen, sulfamethoxazole, and 
erythromycin can persist for almost one year 
and clofibric acid can persist for multiple 
years), 

• tend to adsorb and be distributed in a living 
body, which from a metabolic point of view 
modifies their chemical structure. 

 
OXIDATIVE STRESS IN FISH 
 
A disturbance in the balance between the 
prooxidants and antioxidants leading to 
detrimental biochemical and physiological 
effects is known as oxidative stress. Indicators 
of oxidative stress include changes in 
antioxidant enzyme activity, damaged DNA 
bases, protein oxidation products, and lipid 
peroxidation products. 
It has been found that pollutants present in the 
water surface can mediate their toxicity in fish 
by the appearance of oxidative stress resulting in 
changes in proteins, membrane lipids and DNA 
molecules (Bethanie, 2008). The result of such 
exposure leading to oxidative stress can impair 
cellular or biological function which can lead to 
the appearance of diseases. 
Biomarkers of oxidative stress, such as changes 
in antioxidant enzyme activity or in degree of 
accumulation of damaged molecules, can offer 
an early warning sign for exposure to toxic 
substances. 

For the reducing oxidative stress the activity of 
antioxidant enzymes as catalase (CAT) and 
superoxide dismutase (SOD) are involved in the 
detoxification of reactive oxygen species (ROS). 
On the other hand, glutathione-S-transferase 
(GST) is responsible for the metabolism of 
xenobiotic compounds such as pharmaceuticals.  
CAT is mainly located in the peroxisomes and is 
responsible for the reduction of H2O2 produced 
from the metabolism of long chain fatty acids in 
peroxisomes; GPx catalyzes the reduction of 
both H2O2 and lipid peroxide. The different 
responses of CAT and GPx indicate different 
mechanisms for ROS removal (Gao et al., 2018). 
The most abundant and important molecular 
antioxidants in cellular cytoplasm is reduced 
glutathione (GSH). GSH is used as a 
conjugating molecule by GST to ease excretion 
of xenobiotics. GSH is also used for reduction of 
lipid peroxides by the action of glutathione 
peroxidase (GPx). Gluthatione reductase (GR) 
was proposed to use as biomarkers in fish 
oxidative stress (Stephensen et al., 2002). 
The lipid peroxidation (MDA) process also 
affects biomolecules associated with the 
membrane, i.e., membrane bound proteins or 
cholesterol, and may be of importance in fish as 
their membranes contain a higher degree of 
PUFA than other vertebrates (Monserrat et al., 
2007). 
Huang et al. (2007) have measured contaminant-
induced oxidative damage in Cyprinus carpio 
captured in the Yellow River, China, a river 
contaminated by phenols, oils, PAHs and 
ammonia. While SOD and GST were 
upregulated in all tissues investigated, CAT and 
GPx were decreased in both kidney and gut 
tissues, the same tissues which were also found 
to have higher levels of MDA, suggesting that a 
lack of antioxidant defences could result in 
oxidative damage. 
Studies have shown that the exposure to iron 
sulphate of the Carassius auratus species has 
led to an increased levels of protein 
carbonylation and lipid peroxidation and 
decreases in CAT, GST and GR activities 
(Bagnyukova et al., 2006). On the other hand, 
goldfish exposed to arsenic had increased 
activities of SOD, CAT and GPx as well as 
increased levels of lipid peroxides and GSSG 
(Bagnyukova et al., 2007). 
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Three species of cichlid from a metal-
contaminated river showed changes in SOD, 
CAT and GPx activities. All species showed 
increases in lipid peroxidation in the 
metal1contaminated river in both spring and 
autumn (Ruas et al., 2007). 
 
EFFECT OF PHARMACEUTICAL 
RESIDUES ON FISH OXIDATIVE 
STRESS 
 
Accumulation of pharmaceuticals in biological 
tissues is related to a small portion of un-ionized 
species, with a high affinity for lipophilic 
matter, remaining in the aqueous phase (Fabbri 
& Franzellitti, 2016). It is known that the 
response of antioxidant enzymes depends on the 
intensity of the oxidative pressure, and that an 
overload of the antioxidant defence system can 
occur in conditions of oxidative stress (Mauro et 
al., 2021). 
The effect of different pharmaceutical products 
from watersurface on fish oxidative stress is 
presented in Table 1. 
 
Antibiotics 
A long period of exposure to antibiotics can 
cause a reduction in the activity of antioxidant 
defences (glutathione and catalase) (Almeida et 
al., 2019). This induces oxidative damage, 
probably due to the prolonged exposure to the 
drug and its resulting accumulation in the 
tissues, leading to a reduction of the enzymatic 
activity (Zhou et al., 2018). 
The level of lipid degradation in terms of lipid 
peroxidation (MDA) was found to be signifi-
cantly higher in liver tissue of Pangasius sp. 
exposed to norfloxacin 30 mg/L. MDA has been 
increased about 1.61-fold in norfloxacin treated 
fish than the control fish (Shreenidhi et al., 
2021). 

Antipsychotics and antiepileptics drugs  
Sehonova et al. (2017) studied the effects of the 
tricyclic antidepressants amitriptyline, 
nortriptyline and clomipramine at 
concentrations of 10, 100 and 500 μg/L on early-
life stages of common carp (Cyprinus carpio) 
for a period of 30 days. Long-term exposure 
resulted in a significant increase in mortality, 
developmental retardation, morphological 
anomalies, and pathological changes in brain, 
heart and kidney. In addition, changes in 
antioxidant enzyme activity as well as an 
increase in lipid peroxidation were observed, 
even at the lowest tested concentrations.  
Studies by Li et al. (2010) showed that the 
inhibition of CAT activity in the Oncorhynchus 
mykiss after exposure to individual 
carbamazepine (2mg/L), due to the 
overwhelming production of hydrogen peroxide 
by SOD. 
 
Analgesic/anti-inflammatory drugs 
Literature studies show that pharmaceuticals 
(especially diclofenac) and their photolysis by 
products were, to some extent, able to cause 
moderate toxicity on zebrafish after seven days 
of exposure (Diniz et al., 2015).  
Gao et al. (2018) showed obvious decrease of 
antioxidant enzymes activity in Cyprinus carpio 
groups exposed to analgesic drugs may be due 
to the impairment of the antioxidant system, 
responsible for the increasing lipid peroxidation 
and disequilibrium of GSH/GSSG. 
 
Antihistaminic drugs 
Teixeira et al. (2017) observed that 12 μg/L 
cetirizine inhibited the activity of glutathione  
S-transferases activity (GSTs) and the activity of 
SOD and CAT.
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POLICY INSTRUMENTS TO CONTROL 
PHARMACEUTICALS IN THE 
ENVIRONMENT 
 
The use of best practices, a good international 
cooperation, awareness of the dangers of these 
substances in the aquatic environment and an 
improvement of understanding of risks should 
be used to reduce pharmaceuticals products in 
surface water. 
The development of "green" and eco-friendly 
pharmaceuticals with low environmental 
persistence, no bioaccumulation, and reduced 
toxicity could help minimize accumulation in 
the environment. The Stockholm County 
Council of Sweden developed a classification 
system for the environmental impact of 
pharmaceuticals called the PBT index (Patel et 
al., 2019). This is defined as the sum of the 
values for persistence, bioaccumulation, and 
toxicity. Pharmaceuticals are classified on a 0-3 
scale in this index for persistence, 
bioaccumulation, and toxicity. A value of 0 
corresponds to the most environmentally 
friendly while 3 is the worst for the environment. 
Physicians should discourage using 
pharmaceuticals with high PBT index values 
and encourage development of more eco-
friendly pharmaceuticals (Patel et al., 2019). 
Some important recommendations are listed 
below: 
• advanced methods for accurate and 

continuous detection of pharmaceuticals in 
environmental systems should be developed and 
applied, 
• strict regulations for effluent release from 

industrial and hospital point sources must be 
implemented, 
• greener technologies should be 

implemented for pharmaceutical development, 
manufacture, and use, 
• continuous research is required to how 

chronic exposure to micropollutants effects 
aquatic environment, 
• implementation a standard to limit 

micropollutants in wastewaters and 
environmental water systems, 
• choosing an effective technology and 

equipment for pharmaceutical remediation and 
implementation of these on a large scale and at 
a low cost. 

 

CONCLUSIONS  
 
In conclusion, for the future studies is necessary 
to test the same concentrations of various drugs 
for the same time intervals on the same fish 
species. This is required in order to make 
comparisons and to prove the hypothesis on the 
effect of a certain drug on fish oxidative stress. 
Also, there are insufficient data on the potential 
for impacts on higher trophic levels, either 
through trophic transfer of pharmaceuticals or 
indirect effects due to impacts on lower trophic 
levels including algae. 
At the same time, it is necessary to implement a 
pharmaceutical return program for unwanted 
and expired drugs which will help control the 
volume of pharmaceuticals released that are 
present in household wastes and domestic 
effluents. 
In the near future, the development of an eco-
friendly pharmaceuticals with low persistence in 
water surface, bioaccumulation and toxicity 
could help minimize accumulation in the aquatic 
environment. 
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