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Abstract 
 
The continuous crop condition monitoring at a regional scale is critical especially for private investors which should 
apply land reclamations measures regarding the soil degradation and modern methods of irrigation for optimizing the 
water use efficiency and crop yield production. Benefiting from the newest European remote sensing technology, in 
particular the Sentinel 2 imagery, the paper investigates the crop vegetation status during the 2016’s growing season 
and covers the Cazasu agricultural area, located in the Braila Plain. Red edge bands have been exploited in order to 
correlate the spectral indices with chlorophyll and the plant water content. Thus, the wheat biophysical variables, as 
leaf area index (LAI), leaf chlorophyll (CAB), canopy water content (CWC), normalized differential vegetation index 
(NDVI), fraction of vegetation cover (FCOVER) and fraction of absorbed photosynthetically active radiation (FAPAR) 
have been retrieved by inversion of PROSAIL canopy radiative transfer model. This model, focused on the red edge 
which stimulates the whole spectro-directional canopy field between red and near infrared, is sensitive to the variations 
in leaf chlorophyll, leaf area index, soil substrate and atmospheric conditions. A good synergy between vegetation 
variables was obtained, confirming the Sentinel 2 capabilities to monitor crops and to develop useful products to be 
offered as services to the farmers. 
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INTRODUCTION 
 
The launch of Sentinel 2 satellites offers new 
opportunities for a continuous monitoring of 
the land and vegetation in the context of the 
global warming and climate changes from the 
last decade. Since it provides continuity for the 
SPOT and Landsat missions, the red edge 
spectral band is useful in the estimation of plant 
chlorophyll content, biomass and hydric status. 
Based on the hyperspectral remotely sensed 
imagery, the methodology for extracting red 
edge position parameters has been developed. 
The linear interpolation is the simplest method 
that assumes thereflectance red edge simplified 
to a straight line centred on a midpoint between 
maximum and minimum of the chlorophyll 
reflectance curve (Baret et al., 1987; Guyot et 
al., 1992; Danson and Plummer, 1995). 
The second technique uses an inversion of 
Gaussian function for fitting the spectral 
reflectance in the 680 – 800 nm band range in 
order to determine its parameters (Bonham – 
Carter, 1988; Miller et al., 1990; Pu et al., 

2003). Third method implies the forcing of 
Lagrange interpolation curve trough the given 
points fixed in the red edge spectrum bands 
(Dawson and Curran, 1988). The polynomial 
fitting method uses a high-order polynomial 
function to fit the reflectance spectrum between 
red edge position in the points corresponding to 
the minimum in red and maximum in NIR 
(Demetriades – Shah et al., 1990; Clevers and 
Jongschaap, 2001; Pu et al., 2003; Baranoski 
and Rokne, 2005). 
Linking these methods into PROSAIL canopy 
radiative model allowed us to retrieve 
vegetation biophysical parameters from 
multispectral imagery (Jacquemoud et al., 
1995). Thus, the canopy is considered a turbid 
medium with the leaves randomly located and 
having proper structural and chemical 
characteristics (Jacquemoud et al., 2009). 
Moreover, the model is best suitable for use in 
homogeneous vegetation canopies like wheat, 
rice and grassland and it has been widely 
validated by thescientific community (Verhoef, 
1984; Thorp et al., 2012; Vuolo et al., 2009). 
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The transfer radiative models require three sub-
models describing:(i) the leaf optical properties 
(e.g. leaf area index, mesophyll structure 
parameters, leaf chlorophyll, dry matter 
content, relative water content, brownpigment 
content and fraction of pure vegetation); (ii) the 
scattering and absorption processes within the 
canopy (solar zenith angle, fraction of diffuse 
incoming radiation and view zenith angle) and 
(iii) the spectral reflectance of the underlying 
soil background.  
Different inversion strategies have been 
developed to reduce the number of variables 
and physical processes (Jacquemoud et al., 
1995; Gastellu-Etchegorry et al., 2003; 
Rummelhart et al., 1986; Bacour et al., 2006; 
Mridha et al., 2014; Durbha et al., 2007). 
Among these approaches, look-up table (LUT) 
and artificial neural networks are 
computationally more efficient and can be 
applied on a pixel basis of satellite images to 
the most sophisticated models without any 
simplifications. The fundamental concept of 
neural networks consist in calibrating an 
inverse model over the synthetic learning 
dataset which can incorporate a priori 
knowledge of the measurement conditions like 
soil reflectance, canopy architecture and solar 
position. This implies a dataset selection 
(biophysical variables as inputs and outputs) in 
the generation of a training database that is 
accomplished by defining an optimal structure, 
normalization and calibration. Their main 
advantage is that to represent a good 
compromise between the level of accuracy and 
the complexity of setting-up the simulation. 
Thus, good agreement between global neural 
networks and interpolated ones has been 
obtained in the Sentinel 2 dataset case (Vuolo 
et al., 2016). 
The Sentinel 2 satellites provide high spatial 
and temporal resolution data for assessing crop 
status and supporting agro-practices at the 
parcel level. Benefiting from the availability of 
Sentinel 2 data, many services can be 
developed in the agricultural sector. 
GEOFARM project, a service for agricultural 
monitoring in Romania, is dedicated to 
irrigation water management user community 
and aims to become a national advisory system 
for irrigated perimeters. Therefore, the 
objective of the paper is to perform an analysis 

of PROSAIL model inversion by artificial 
neural network approach and, in the same time, 
to derive biophysical parameters such as leaf 
chlorophyll content, canopy water content and 
leaf area index of wheat crops from 
multispectral Sentinel 2 data. In this 
perspective, the synergic analysis through 
satellite data and agro-models allows the end-
user to determine an optimal input for each 
affected area inside the plot, according to intra-
parcel variability. 
 
MATERIALS AND METHODS 
 
Description of the test area and dataset 
The study area is located in Braila Plain, North 
Braila Terrace subunit, Romania (latitude 
45012’58” to 45021’03”, longitude 27042’54” to 
27057’36”). It covers an area of 25,000 ha and 
extends into the western part of Braila town 
(Figure 1). The plains generally predominate, 
with some dunes in the northern part which do 
not exceed 40 m in elevation with a slope 
ranging from 10 to 30.  
Geologically, the area lies on loess-like 
deposits, fluvial and aeolian deposits combined 
with gravels and sands which date back to the 
quaternary period.  
The climate is temperate continental 
characterized by hot and dry summers, low 
rainfall (400 – 490 mm), cold winters without a 
stable and continuous snow cover, influenced 
by the Siberian anticyclone.  
High temperatures in the summer season favour 
the increase of the saturation deficit which 
induces the intensification of the evaporation 
process. The dominant crops are wheat, corn, 
sunflower, sugar beet, alpha-alpha, rapeseed 
and vegetables. 
The investigations were focused on wheat 
biophysical parameters retrieval from multi-
temporal multispectral Sentinel 2 data. We used 
21 satellite images covering the phenological 
cycle of wheat crop from 2015-2016 seasons to 
estimate plant parameters with PROSAIL 
model. The Sentinel 2 top of canopy 
reflectance images were downloaded through 
Copernicus Open Access Hub 
(https://scihub.copernicus.eu/).  
The pixels contaminated with clouds/cloud 
shadow were not used in this study. A set 41 of 
samples were randomly selected from the 
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centre of wheat parcels, one sample 
representing a group of 5 x 5 pixels. 
Biophysical parameters retrieval methodology 
Leaf area index defined as the one sided green 
leaf area per unit ground surface area is a key 
variable when modelling surface 
evapotranspiration and biomass production 
(Watson, 1947, Dorigo et al., 2007). FCOVER 
corresponds to the gap fraction in the nadir 
direction and represents the amount of 
vegetation distributed in the horizontal plane. 
This parameter is used to separate vegetation 
and soil in the energy balance processes (Baret 
et al., 2005). FAPAR corresponds to the 
fraction of photosynthetically active radiation 
absorbed by the canopy and is included in the 
agro-models to derive the biomass accumulated 
during a given period (Baret et al., 2005). 
Canopy chlorophyll content (Cab) is a bio-
indicator of plants actual health status and of a 
vegetation gross primary productivity (Jaramaz 
et al., 2013). It can be expressed as leaf area 
index multiplied by leaf level chlorophyll 
content. Canopy water content (CWC) defined 
as mass of water per unit ground area is a 
dynamic parameter that depends on the balance 

between water losses from transpiration and 
water uptake from the soil (Ustin et al., 2012). 
It can be also expressed as leaf area index 
multiplied by equivalent water thickness 
(Jacquemoud et al., 1990). 
To derive these parameters, we used the 
algorithm included in the SNAP ESA Toolbox 
that generates a comprehensive database of 
vegetation characteristics and top of canopy 
(TOC) reflectance. Neural networks were 
afterwards trained to estimate the canopy 
characteristics from the TOC reflectance along 
with the corresponding angles defining the 
observational configuration. For each 
biophysical variable, one particular neural 
network was calibrated.  Each neural network 
is  composed of: one input layer containing a 
set of 11 normalized data, one hidden layer 
with 5 neurons with tangent sigmoid transfer 
function (to activate the artificial neurons) and 
one output  layer with linear transfer function 
(Vuolo et al., 2016) (Figure 2). Leaf area index, 
FCOVER, FAPAR, Cab and CWC were finally 
retrieved (Table 1). 
 

 

 
Figure 1. Cazasu agricultural area, Romania 

 
Tabel 1. Specific ranges for biophysical variables retrieved from the PROSAIL model 

Parameter Main indicator Unit Min Max stdv 
Leaf area index Plant functioning m2m-2 0 23 0.023 
Leaf chlorophyll 

content 
Nitrogen stress/ 

photosynthesis 
µg cm-2 -110 546 0.6 

Canopy water content Drought stress Kg m-2 -0.32 0.22 0.005 
FCOVER Plant development - 0 0.98 0.002 
FAPAR Photosynthesis - -1.46 0.94 0.02 
NDVI Nitrogen stress/ 

drought stress 
- -0.3 0.88 0.0012 

Sun zenith Surface albedo Angle 
degrees 

28 69 - 

Sun azimuth Surface albedo Angle 
degrees 

147 168 - 
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Figure 2. Schematic presentation of the PROSAIL model in forward mode 

 
RESULTS AND DISCUSSIONS 
 
The PROSAIL model analysis 
The current study presents preliminary results 
of Sentinel 2 data processing for biophysical 
parameters estimation without validation on in-
situ measurements. Therefore, the PROSAIL 
model included in SNAP software as 
biophysical processor was used in this analysis. 
We first verified that the Sentinel 2 surface 
reflectances are consistent at spatial resolution. 
After resampling, the PROSAIL model was 
applied to all the data used for neural networks, 
normalization, quality flags and uncertainties 
processing steps disposed in the SNAP 
parameter tables 
(Algo_S2_V2.1_SL2T_biophysical_parameter.
xlsx, © ESA version 5.04).  Each table contains 
the weights, biases and neural network 
structure information that are settled to the 
certain values which are evaluated when the 
model is running. The uncertainties associated 
to the inputs and the algorithm calibrations 
were reduced by applying rules which consider 
the valid value (Table 2). 
 
The biophysical parameters evaluation 
The retrieved biophysical variables are 
presented in Figure 3. Mean and standard 
deviation, the minimum and maximum value 

and the coefficient of variation were inspected 
to ensure the parameter value is in definition 
range (Delegido et al., 2011; Vuelo et al., 2016, 
Frampton et al., 2013).According to the number 
of samples, the plots were divided in 2 data 
sets. The statistical analysis was done 
separately for each dataset.  
We considered an average of the best fitted 
spectrum. The results shown in Figure 4 depict 
a good agreement between LAI – FCOVER, 
FCOVER – FPAR, LAI - Cab and LAI – CWC 
(with a correlation coefficient above 0.90). 
Normalized differential vegetation index was 
computed from Sentinel data in order to 
validate LAI results. As is observed in Figure 
4, this estimation remains in agreement with 
previous studies based on the same tools 
(Gaman et al., 1995; Barman et al., 2009). 

 
Table 2. Rules for artificial neural network selection 

Description of the threshold Value 
Input is out of definition domain 1 
Output is lesser than minimum 

output, but within the tolerance 2 

Output is greater that maximum 
output, but within tolerance 4 

Output is too low 8 
Output is too high 16 

Bias Up to 4 
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Figure 3. Biophysical variables based on averaged 

subplots 
 
CONCLUSIONS 
 
The study assesses the sensitivity of Sentinel 2 
data to estimate wheat biophysical variables 
using PROSAIL model in a homogenous area 
from the Braila Plain. For the fast model 
inversion, an artificial neural network included 
in the SNAP biophysical processor was used.  

 
Figure 4. Relationship between LAI and NDVI  

 
LAI, FCOVER canopy water content and leaf 
chlorophyll content have been estimated 
without in-situ validation measurements. 
The good correlation between these variables 
demonstratesthe Sentinel 2 capabilities to 
monitor crops and to develop useful products to 
be offered as services to the farmers. 
The future activities will be focused on the 
integration of vegetation biophysical 
parameters into a WebGIS environment 
givingend usersthe possibility to visualize and 
query the crop information at different dates 
during the growing season.  
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